
Unit Testing in Fortran
Connor Aird

RSE, Advanced Research Computing Centre (ARC)
UCL

c.aird@ucl.ac.uk

● Fortran unit testing lesson in the style of the
software carpentries

● GitHub repository of exercises to act as
challenges within lesson

The Source Material

https://github-pages.arc.ucl.ac.uk/fortran-unit-testing-lesson/
https://github.com/UCL-ARC/fortran-unit-testing-exercises

What is a Unit Test?

A way of verifying the validity of a code base by testing its smallest individual
components, or units.

Unit tests are…

● Isolated - Do not rely on any other unit of code within the repository.

● Minimal - Test only one unit of code.

● Fast - Run on the scale of ms or s.

Why is it hard to unit test Fortran?

Fortran code can often have a lot of…

● Global variables

● Large, multipurpose procedures

The further we can move away from
these practices, the easier it will be to
unit test Fortran code

!> Evolve the board into the state of the next iteration
subroutine evolve_board()
 integer :: row, col, sum

 do row=2, nrow-1
 do col=2, ncol-1
 sum = 0
 sum = current_board(row, col-1) &
 + current_board(row+1, col-1) &
 + current_board(row+1, col) &
 + current_board(row+1, col+1) &
 + current_board(row, col+1) &
 + current_board(row-1, col+1) &
 + current_board(row-1, col) &
 + current_board(row-1, col-1)
 if(current_board(row,col)==1 .and. sum<=1) then
 new_board(row,col) = 0
 elseif(current_board(row,col)==1 .and. sum<=3) then
 new_board(row,col) = 1
 elseif(current_board(row,col)==1 .and. sum>=4)then
 new_board(row,col) = 0
 elseif(current_board(row,col)==0 .and. sum==3)then
 new_board(row,col) = 1
 endif
 enddo
 enddo

 return
end subroutine evolve_board

❌ BAD →

Why is it hard to unit test Fortran?

Fortran code can often have a lot of…

● Global variables

● Large, multipurpose procedures

The further we can move away from
these practices, the easier it will be to
unit test Fortran code

!> Evolve the board into the state of the next iteration
subroutine evolve_board(current_board, new_board)
 integer, dimension(:,:), allocatable, intent(in) :: current_board
 integer, dimension(:,:), allocatable, intent(inout) :: new_board

 integer :: row, col, num_rows, num_cols, sum

 num_rows = size(current_board, 1)
 num_cols = size(current_board, 2)

 do row=2, num_rows-1
 do col=2, num_cols-1
 sum = 0
 sum = current_board(row, col-1) &
 + current_board(row+1, col-1) &
 + current_board(row+1, col) &
 + current_board(row+1, col+1) &
 + current_board(row, col+1) &
 + current_board(row-1, col+1) &
 + current_board(row-1, col) &
 + current_board(row-1, col-1)
 if(current_board(row,col)==1 .and. sum<=1) then
 new_board(row,col) = 0
 elseif(current_board(row,col)==1 .and. sum<=3) then
 new_board(row,col) = 1
 elseif(current_board(row,col)==1 .and. sum>=4)then
 new_board(row,col) = 0
 elseif(current_board(row,col)==0 .and. sum==3)then
 new_board(row,col) = 1
 endif
 enddo
 enddo
end subroutine evolve_board

✅ GOOD →

What test frameworks are there?

pFUnit test-drive Veggies

CMake ✅ ✅ ✅
Fortran Package
Manager (FPM)

❌ ✅ ✅

MPI ✅ ❌ ❌
OpenMP ❌ ❌ ❌
Array assertions ✅ ❌ ✅

https://github.com/Goddard-Fortran-Ecosystem/pFUnit
https://github.com/fortran-lang/test-drive
https://gitlab.com/everythingfunctional/veggies

What test frameworks are there?

pFUnit test-drive Veggies

CMake ✅ ✅ ✅
Fortran Package
Manager (FPM)

❌ ✅ ✅

MPI ✅ ❌ ❌
OpenMP ❌ ❌ ❌
Array assertions ✅ ❌ ✅

Able to parameterize tests
using numbers of MPI ranks

https://github.com/Goddard-Fortran-Ecosystem/pFUnit
https://github.com/fortran-lang/test-drive
https://gitlab.com/everythingfunctional/veggies

What test frameworks are there?

pFUnit test-drive Veggies

CMake ✅ ✅ ✅
Fortran Package
Manager (FPM)

❌ ✅ ✅

MPI ✅ ❌ ❌
OpenMP ❌ ❌ ❌
Array assertions ✅ ❌ ✅

Able to parameterize tests
using numbers of MPI ranks

https://github.com/Goddard-Fortran-Ecosystem/pFUnit
https://github.com/fortran-lang/test-drive
https://gitlab.com/everythingfunctional/veggies

Writing a Serial Unit Test

How do you write a Fortran unit test?

Each testing framework follows a similar pattern…

module test_something
 ! use funit|pfunit|testdrive|veggies|
 ! use the src to be tested
 implicit none

 ! Define types to act as test parameters (and test case for pfunit)
contains

 ! Define a test suite (collection of tests) to be returned from a procedure

 ! Define the actual test execution code which will call the src and execute assertions

 ! Define constructors for your derived types (test parameters/cases)
end module test_something

How do you write a Fortran unit test?

Live Demo
Writing a serial unit test

episodes/3-fortran-unit-test-syntax/challenge
pFUnit task 2

https://github.com/UCL-ARC/fortran-unit-testing-exercises/tree/main/episodes/3-fortran-unit-test-syntax/challenge

module test_find_steady_state
 use game_of_life_mod, only : find_steady_state ! <-- Import the src to be tested
 use funit ! <-- Import the serial pFUnit lib

 implicit none

 ! Define types to act as test parameters (and test case for pfunit)
contains

 ! Define a test suite (collection of tests) to be returned from a procedure

 ! Define the actual test execution code which will call the src and execute assertions

 ! Define constructors for your derived types (test parameters/cases)
end module test_find_steady_state

How do you write a Fortran unit test?
Create test module - test_find_steady_state.pf

How do you write a Fortran unit test?
Define types to act as test parameters (and test case for pfunit)

type, extends(AbstractTestParameter) :: find_steady_state_test_params ! <-- pFUnit type

end type find_steady_state_test_params

How do you write a Fortran unit test?
Define types to act as test parameters (and test case for pfunit)

type, extends(AbstractTestParameter) :: find_steady_state_test_params

 !> The initial starting board to be passed into find_steady_state ! <-- Inputs

 integer, dimension(:,:), allocatable :: input_board ! <--

end type find_steady_state_test_params

How do you write a Fortran unit test?
Define types to act as test parameters (and test case for pfunit)

type, extends(AbstractTestParameter) :: find_steady_state_test_params

 !> The initial starting board to be passed into find_steady_state

 integer, dimension(:,:), allocatable :: input_board

 !> The expected value of steady_state ! <-- Expected outputs

 logical :: expected_steady_state ! <--

 !> The expected output generation number ! <--

 integer :: expected_generation_number ! <--

end type find_steady_state_test_params

How do you write a Fortran unit test?
Define types to act as test parameters (and test case for pfunit)

type, extends(AbstractTestParameter) :: find_steady_state_test_params

 !> The initial starting board to be passed into find_steady_state

 integer, dimension(:,:), allocatable :: input_board

 !> The expected value of steady_state

 logical :: expected_steady_state

 !> The expected output generation number

 integer :: expected_generation_number

 !> A description of the test to be outputted for logging ! <-- Required for

 character(len=100) :: description ! <-- logging

Contains ! <--

 procedure :: toString => find_steady_state_test_params_toString ! <--

end type find_steady_state_test_params

How do you write a Fortran unit test?
Define types to act as test parameters (and test case for pfunit)
@testParameter ! <-- pFUnit macro

type, extends(AbstractTestParameter) :: find_steady_state_test_params

 !> The initial starting board to be passed into find_steady_state

 integer, dimension(:,:), allocatable :: input_board

 !> The expected value of steady_state

 logical :: expected_steady_state

 !> The expected output generation number

 integer :: expected_generation_number

 !> A description of the test to be outputted for logging

 character(len=100) :: description

contains

 procedure :: toString => find_steady_state_test_params_toString

end type find_steady_state_test_params

How do you write a Fortran unit test?

type, extends(ParameterizedTestCase) :: find_steady_state_test_case ! <-- pFUnit type

end type find_steady_state_test_case

Define types to act as test parameters (and test case for pfunit)

How do you write a Fortran unit test?

type, extends(ParameterizedTestCase) :: find_steady_state_test_case

 type(find_steady_state_test_params) :: params ! <-- Parameterised

end type find_steady_state_test_case

Define types to act as test parameters (and test case for pfunit)

How do you write a Fortran unit test?

@TestCase(testParameters={getTestSuite()}, constructor=paramsToCase) ! <-- pFUnit macro

type, extends(ParameterizedTestCase) :: find_steady_state_test_case

 type(find_steady_state_test_params) :: params

end type find_steady_state_test_case

Define types to act as test parameters (and test case for pfunit)

How do you write a Fortran unit test?

function getTestSuite() result(params)

 type(find_steady_state_test_params), allocatable :: params(:) ! <-- Returns a list of parameters

end function getTestSuite

Define your testsuite (parameters)

How do you write a Fortran unit test?

function getTestSuite() result(params)

 type(find_steady_state_test_params), allocatable :: params(:)

 integer, dimension(:,:), allocatable :: board ! <-- Populate the board for

 ! <-- each test case.

 allocate(board(31,31)) ! <-- In this scenario there is

 board = 0 ! <-- only one

 board(9, 9:11) = [0,1,0] ! <--

 board(10,9:11) = [1,1,1] ! <--

 board(11,9:11) = [1,0,1] ! <--

 board(12,9:11) = [0,1,0] ! <--

end function getTestSuite

Define your testsuite (parameters)

How do you write a Fortran unit test?

function getTestSuite() result(params)

 type(find_steady_state_test_params), allocatable :: params(:)

 integer, dimension(:,:), allocatable :: board

 allocate(board(31,31))

 board = 0

 board(9, 9:11) = [0,1,0]

 board(10,9:11) = [1,1,1]

 board(11,9:11) = [1,0,1]

 board(12,9:11) = [0,1,0]

 params = [& ! <--↓↓↓↓↓↓ Create the test cases

find_steady_state_test_params(board, .true., 17, "an exploder initial state")]

end function getTestSuite

Define your testsuite (parameters)

subroutine TestFindSteadyState(this)

 class(find_steady_state_test_case), intent(inout) :: this ! <-- Input the test case itself

end subroutine TestFindSteadyState

How do you write a Fortran unit test?
Define the actual test execution code which will call the src and execute assertions

subroutine TestFindSteadyState(this)

 class(find_steady_state_test_case), intent(inout) :: this

 logical :: actual_steady_state ! <-- Define values to be checked

 integer :: actual_generation_number ! <-- and call src under test

 ! ↓↓↓↓↓↓↓↓↓↓↓↓
 call find_steady_state(.false., this%params%input_board, actual_steady_state, actual_generation_number)

end subroutine TestFindSteadyState

How do you write a Fortran unit test?
Define the actual test execution code which will call the src and execute assertions

subroutine TestFindSteadyState(this)

 class(find_steady_state_test_case), intent(inout) :: this

 logical :: actual_steady_state

 integer :: actual_generation_number

 call find_steady_state(.false., this%params%input_board, actual_steady_state, actual_generation_number)

 ! ↓↓↓↓↓↓ Check generation_number value
 @assertEqual(this%params%expected_generation_number, actual_generation_number, "Unexpected generation_number")

end subroutine TestFindSteadyState

How do you write a Fortran unit test?
Define the actual test execution code which will call the src and execute assertions

subroutine TestFindSteadyState(this)

 class(find_steady_state_test_case), intent(inout) :: this

 logical :: actual_steady_state

 integer :: actual_generation_number

 call find_steady_state(.false., this%params%input_board, actual_steady_state, actual_generation_number)

 @assertEqual(this%params%expected_generation_number, actual_generation_number, "Unexpected generation_number")

 ! ↓↓↓↓↓↓ Check steady_state value
 @assertTrue(this%params%expected_steady_state .eqv. actual_steady_state, "Unexpected steady_state value")

end subroutine TestFindSteadyState

How do you write a Fortran unit test?
Define the actual test execution code which will call the src and execute assertions

@Test ! <-- pFUnit macro

subroutine TestFindSteadyState(this)

 class(find_steady_state_test_case), intent(inout) :: this

 logical :: actual_steady_state

 integer :: actual_generation_number

 call find_steady_state(.false., this%params%input_board, actual_steady_state, actual_generation_number)

 @assertEqual(this%params%expected_generation_number, actual_generation_number, "Unexpected generation_number")

 @assertTrue(this%params%expected_steady_state .eqv. actual_steady_state, "Unexpected steady_state value")

end subroutine TestFindSteadyState

How do you write a Fortran unit test?
Define the actual test execution code which will call the src and execute assertions

How do you write a Fortran unit test?
Define constructors for your derived types (test cases/parameters)

function paramsToCase(testParameter) result(tst) ! <-- Convert params

 type(find_steady_state_test_params), intent(in) :: testParameter ! <-- to case

 type(find_steady_state_test_case) :: tst ! <--

end function paramsToCase

How do you write a Fortran unit test?
Define constructors for your derived types (test cases/parameters)

function paramsToCase(testParameter) result(tst)

 type(find_steady_state_test_params), intent(in) :: testParameter

 type(find_steady_state_test_case) :: tst

 tst%params = testParameter ! <-- Copy params

end function paramsToCase

How do you write a Fortran unit test?
Define constructors for your derived types (test cases/parameters)

function find_steady_state_test_params_toString(this) result(string) ! <-- Convert params

 class (find_steady_state_test_params), intent(in) :: this ! <-- to string

 character(:), allocatable :: string ! <--

end function find_steady_state_test_params_toString

How do you write a Fortran unit test?
Define constructors for your derived types (test cases/parameters)

function find_steady_state_test_params_toString(this) result(string)

 class (find_steady_state_test_params), intent(in) :: this

 character(:), allocatable :: string

 character(len=80) :: buffer ! <-- Populate a buffer with

 integer :: nrow, ncol ! <-- some text to be

 ! <-- logged during testing

 nrow = size(this%input_board, 1) ! <--

 ncol = size(this%input_board, 2) ! <--

 write(buffer,'(i2, "x", i2, " board with ", a)') & ! <--

 nrow, ncol, trim(this%description) ! <--

end function find_steady_state_test_params_toString

How do you write a Fortran unit test?
Define constructors for your derived types (test cases/parameters)

function find_steady_state_test_params_toString(this) result(string)

 class (find_steady_state_test_params), intent(in) :: this

 character(:), allocatable :: string

 character(len=80) :: buffer

 integer :: nrow, ncol

 nrow = size(this%input_board, 1)

 ncol = size(this%input_board, 2)

 write(buffer,'(i2, "x", i2, " board with ", a)') &

 nrow, ncol, trim(this%description)

 string = trim(buffer) ! <-- Save the buffer

end function find_steady_state_test_params_toString

pFUnit CMake configuration

find_package(PFUNIT REQUIRED) # <-- Find pFUnit lib from CMAKE_PREIX_PATH

Integrating with build systems

pFUnit CMake configuration

find_package(PFUNIT REQUIRED)

enable_testing() # <-- Enable ctest

Integrating with build systems

pFUnit CMake configuration

find_package(PFUNIT REQUIRED)

enable_testing()

add_library (sut STATIC ${PROJ_SRC_FILES}) # <-- Create a src library

Integrating with build systems

pFUnit CMake configuration

find_package(PFUNIT REQUIRED)

enable_testing()

add_library (sut STATIC ${PROJ_SRC_FILES})

file(GLOB test_srcs "${PROJECT_SOURCE_DIR}/test/pfunit/*.pf") # <-- Filter all test files to just the

 # <-- find_steady_state test

set(test_find_steady_state_src ${test_srcs}) # <--

list(FILTER test_find_steady_state_src # <--

 INCLUDE REGEX ".*test_find_steady_state.pf") # <--

Integrating with build systems

pFUnit CMake configuration

find_package(PFUNIT REQUIRED)

enable_testing()

add_library (sut STATIC ${PROJ_SRC_FILES})

file(GLOB test_srcs "${PROJECT_SOURCE_DIR}/test/pfunit/*.pf")

set(test_find_steady_state_src ${test_srcs})

list(FILTER test_find_steady_state_src

 INCLUDE REGEX ".*test_find_steady_state.pf")

add_pfunit_ctest (pfunit_find_steady_state_tests # <-- Add test to ctest with the

 TEST_SOURCES ${test_find_steady_state_src} # <-- provided pfunit function

 LINK_LIBRARIES sut) # <--

Integrating with build systems

Writing a Parallel Unit test

There are a few key things we need a parallel unit test to handle…

● Running with different numbers of MPI ranks for a single mpirun execution.

● Asserting different things for different ranks within the same test case.

What do we want from a parallel unit test?

Live Demo
Writing a parallel unit test

episodes/5-testing-parallel-code/challenge

How do you write a parallel unit test?

https://github.com/UCL-ARC/fortran-unit-testing-exercises/tree/main/episodes/5-testing-parallel-code/challenge

Use pfunit instead of funit

How do you write a parallel unit test?

module test_find_steady_state
 use game_of_life_mod, only : find_steady_state ! <-- Import the src to be tested
 use pfunit ! <-- Import the parallel pFUnit lib

 implicit none

 ! Define types to act as test parameters (and test case for pfunit)
contains

 ! Define a test suite (collection of tests) to be returned from a procedure

 ! Define the actual test execution code which will call the src and execute assertions

 ! Define constructors for your derived types (test parameters/cases)
end module test_find_steady_state

type, extends(MPITestParameter) :: find_steady_state_test_params ! <-- Extend MPITestParameter

end type find_steady_state_test_params

How do you write a parallel unit test?
Define types to act as test parameters (and test case for pfunit)

@testParameter ! <-- No change

type, extends(MPITestParameter) :: find_steady_state_test_params

 !> The initial starting board to be passed into find_steady_state ! <-- No change

 integer, dimension(:,:), allocatable :: input_board ! <--

 !> The expected steady state result ! <--

 logical :: expected_steady_state ! <--

 !> The expected number of generations to reach steady state ! <--

 integer :: expected_generation_number ! <--

 !> A description of the test to be outputted for logging ! <--

 character(len=100) :: description ! <--

contains ! <--

 procedure :: toString => find_steady_state_test_params_toString ! <--

end type find_steady_state_test_params

How do you write a parallel unit test?
Define types to act as test parameters (and test case for pfunit)

type, extends(MPITestCase) :: find_steady_state_test_case ! <-- Extend MPITestCase

end type find_steady_state_test_case

How do you write a parallel unit test?
Define types to act as test parameters (and test case for pfunit)

@TestCase(testParameters={getTestSuite()}, constructor=paramsToCase) ! <-- No change

type, extends(MPITestCase) :: find_steady_state_test_case

 type(find_steady_state_test_params) :: params ! <-- No change

end type find_steady_state_test_case

How do you write a parallel unit test?
Define types to act as test parameters (and test case for pfunit)

function getTestSuite() result(params) ! <-- No change to the signature or

 type(find_steady_state_test_params), allocatable :: params(:) ! <-- how we populate the board

 ! <--

 ! <--

 integer, dimension(:,:), allocatable :: board ! <--

 ! <--

 allocate(board(31, 31)) ! <--

 board = 0 ! <--

 board(9,9:11) = [0,1,0] ! <--

 board(10,9:11) = [1,1,1] ! <--

 board(11,9:11) = [1,0,1] ! <--

 board(12,9:11) = [0,1,0] ! <--

end function getTestSuite

How do you write a parallel unit test?
Set the number of MPI ranks for each test case

function getTestSuite() result(params)

 type(find_steady_state_test_params), allocatable :: params(:)

 integer :: i, max_num_ranks = 8 ! <-- Additional variables required

 integer, dimension(:,:), allocatable :: board

 allocate(board(31, 31))

 board = 0

 board(9,9:11) = [0,1,0]

 board(10,9:11) = [1,1,1]

 board(11,9:11) = [1,0,1]

 board(12,9:11) = [0,1,0]

 allocate(params(max_num_ranks)) ! <-- Add a set of parameters for each number of ranks

 do i = 1, max_num_ranks ! <--↓↓↓↓↓↓

 params(i) = find_steady_state_test_params(i, board, .true., 17, "an exploder initial state")

 end do

end function getTestSuite

How do you write a parallel unit test?
Set the number of MPI ranks for each test case

@Test ! <-- No change

subroutine TestFindSteadyState(this) ! <--

 class(find_steady_state_test_case), intent(inout) :: this ! <--

 ! <--

 logical :: actual_steady_state ! <--

 integer :: actual_generation_number ! <--

 ! ↓↓↓↓↓↓ No change

 @assertEqual(this%params%expected_generation_number, actual_generation_number, "Unexpected generation_number")

 @assertTrue(this%params%expected_steady_state .eqv. actual_steady_state, "Unexpected steady_state value")

end subroutine TestFindSteadyState

How do you write a parallel unit test?
Update the call to find steady state

@Test

subroutine TestFindSteadyState(this)

 class(find_steady_state_test_case), intent(inout) :: this

 logical :: actual_steady_state

 integer :: actual_generation_number

 ! ↓↓↓↓↓↓ Use new signature

 call find_steady_state(actual_steady_state, actual_generation_number, this%params%input_board, &

 size(this%params%input_board, 1), size(this%params%input_board, 2), &

 this%getMpiCommunicator(), this%getNumProcessesRequested())

 @assertEqual(this%params%expected_generation_number, actual_generation_number, "Unexpected generation_number")

 @assertTrue(this%params%expected_steady_state .eqv. actual_steady_state, "Unexpected steady_state value")

end subroutine TestFindSteadyState

How do you write a parallel unit test?
Update the call to find steady state

find_package(PFUNIT REQUIRED) # <-- No change

enable_testing() # <--

 # <--

add_library (sut STATIC ${PROJ_SRC_FILES}) # <--

 # <--

file(GLOB test_srcs "${PROJECT_SOURCE_DIR}/test/pfunit/*.pf") # <--

 # <--

set(test_find_steady_state_src ${test_srcs}) # <--

list(FILTER test_find_steady_state_src # <--

 INCLUDE REGEX ".*test_find_steady_state.pf") # <--

Update CMakeLists.txt to mark the test as parallel

How do you write a parallel unit test?

find_package(PFUNIT REQUIRED)

enable_testing()

add_library (sut STATIC ${PROJ_SRC_FILES})

file(GLOB test_srcs "${PROJECT_SOURCE_DIR}/test/pfunit/*.pf")

set(test_find_steady_state_src ${test_srcs})

list(FILTER test_find_steady_state_src

 INCLUDE REGEX ".*test_find_steady_state.pf")

add_pfunit_ctest (pfunit_find_steady_state_tests # <-- Specify a maximum number of MPI processors

 TEST_SOURCES ${test_find_steady_state_src} # <--

 LINK_LIBRARIES sut # <--

 MAX_PES 8) # <-- This line

Update CMakeLists.txt to mark the test as parallel

How do you write a parallel unit test?

Some tips for writing parallel unit tests…

● Not all tests need to be parallel.
○ If a procedure does not call the MPI library it does not need to be tested in parallel.

● Isolate calls to the MPI library into procedures.
○ This allows testing more procedures using serial tests.

● Pass the MPI communicator into procedures which call the MPI library.
○ This allows the test library to set the communicator when testing.

Tips for writing testable parallel code?

Connor Aird
RSE, Advanced Research Computing Centre (ARC)

UCL
c.aird@ucl.ac.uk

Thank You

● Fortran unit testing lesson in the style of the
software carpentries

● GitHub repository of exercises to act as
challenges within lesson

The Source Material

https://github-pages.arc.ucl.ac.uk/fortran-unit-testing-lesson/
https://github.com/UCL-ARC/fortran-unit-testing-exercises

Try it yourself

Open a codespace in the exercises repository

github.com/UCL-ARC/fortran-unit-testing-exercises

https://github.com/UCL-ARC/fortran-unit-testing-exercises
https://docs.google.com/file/d/1j-RPlPmNi-ADjSEWLpXgH2eDDaQk2MWH/preview

