Unit Testing in Fortran

Connor Aird

The Source Material

e Fortran unit testing lesson in the style of the

software carpentries

e GitHub repository of exercises to act as

challenges within lesson

() o=m

Unit Testing in Fortran Key Points

Collapse <

EPISODES
« Summary and Setup
Exercises repository
1. Introduction to Unit Testing
2. Introduction to Unit Testing in Fortran
3. Fortran Unit Test Syntax

4. Understanding test output

e v ‘ © Leamer View v

Glossary Learner Profiles More v Search the All In One page

Next: Introduction to Unit... >

Summary and Setup

This walkthrough aims to...

+ Demonstrate the importance of testing Fortran codes with unit tests

« Show how to write unit tests for Fortran Code using three different frameworks: test-drive, veggies
and pFUnit

+ Show how to integrate these tests with both CMake and FPM build systems.

« Highlight the differences between writing unit tests for parallel and serial Fortran code.

O

THE
CARPENTRIES

https://github-pages.arc.ucl.ac.uk/fortran-unit-testing-lesson/
https://github.com/UCL-ARC/fortran-unit-testing-exercises

What is a Unit Test?

A way of verifying the validity of a code base by testing its smallest individual
components, or units.

Unit tests are...

e Isolated - Do not rely on any other unit of code within the repository.
e Minimal - Test only one unit of code.

e Fast - Run on the scale of ms or s.

Why is it hard to unit test Fortran?

!> Evolve the board into the state of the next iteration

Fortran code can often have a lot of...

e Global variables

e Large, multipurpose procedures

The further we can move away from
these practices, the easier it will be to
unit test Fortran code

X BAD —

subroutine evolve board()
integer :: row, col, sum

do row=2, nrow-1
do col=2, ncol-1
sum = 0

sum = current_ board(row, col-1)

+ + + + + +

current_board(row+l, col-1)
current board(row+l, col)
current_board(row+l, col+l)
current board(row, col+l)
current_board(row-1, col+l)
current board(row-1, col)

+ current_board(row-1, col-1)

if (current_board (row,col)==

new_board (row,col)

elseif (current board(row,col)==1

new_board(;ow,col)

elseif (current board(row,col)==1

new_board(;ow,col)

elseif (current board(row,col)==

new_board(;ow,col)

endif
enddo
enddo
return

end subroutine evolve board

0

1

0

1

.and.

RRRRRRR

sum<=1) then

.and. sum<=3) then
.and. sum>=4) then

.and. sum==3) then

Why is it hard to unit test Fortran?

!> Evolve the board into the state of the next iteration

subroutine evolve_board(current board, new_board)

integer, dimension(:,:), allocatable, intent(in) :: current board

integer, dimension(:,:), allocatable, intent(inout) :: new_board
Fortran code can often have a lot of...

integer :: row, col, num rows, num cols, sum

. Global Variables num_rows : size (current board, 1)

num_cols size (current board, 2)

do row=2, num rows-1
do col=2, num cols-1
L 1t d i
. arge’ mu Ipurpose proce ureS sum = current board(row, col-1)
current board(row+l, col-1)
current board(row+l, col)
current board(row+l, col+l)
current board(row, col+l)
current board(row-1, col+l)
current board(row-1, col)

The further we can move away from
+ current_board(row-1, col-1)
these practices, the easier it will be to oy ow ol and) then

+ o+ + + + +
R R R

. elseif (current_board(row,col)==1 .and. sum<=3) then

unit test Fortran code new_boazd (zow,col) = 1
elseif (current board(row,col)==1 .and. sum>=4)then

new_board (row,col) = 0
elseif (current_board(row,col)==0 .and. sum==3)then

3 GOOD new_board(row,col) = 1

— endif
enddo

enddo
end subroutine evolve board

What test frameworks are there?

CMake

Fortran Package
Manager (FPM)

MPI
OpenMP

Array assertions

pFUnit

test-drive

Veggies

https://github.com/Goddard-Fortran-Ecosystem/pFUnit
https://github.com/fortran-lang/test-drive
https://gitlab.com/everythingfunctional/veggies

What test frameworks are there?

pFUnit test-drive
CMake v
Fortran Package X v
Manager (FPM)
MPI v X
OpenMP X X
Array assertions v X

Able to parameterize tests
using numbers of MPI ranks

Veggies

SEHS

X | X

<

https://github.com/Goddard-Fortran-Ecosystem/pFUnit
https://github.com/fortran-lang/test-drive
https://gitlab.com/everythingfunctional/veggies

What test frameworks are there?

pFUnit test-drive
CMake
Fortran Package
Manager (FPM)
MPI X
OpenMP X
Array assertions X

Able to parameterize tests
using numbers of MPI ranks

Veggies

https://github.com/Goddard-Fortran-Ecosystem/pFUnit
https://github.com/fortran-lang/test-drive
https://gitlab.com/everythingfunctional/veggies

Writing a Serial Unit Test

How do you write a Fortran unit test?

Each testing framework follows a similar pattern...

module test something
! use funit|pfunit|testdrive|veggies|
! use the src to be tested
implicit none

! Define types to act as test parameters (and test case for pfunit)
contains

! Define a test suite (collection of tests) to be returned from a procedure

! Define the actual test execution code which will call the src and execute assertions

| Define constructors for your derived types (test parameters/cases)
end module test something

How do you write a Fortran unit test?

Live Demo

episodes/3-fortran-unit-test-syntax/challenge

https://github.com/UCL-ARC/fortran-unit-testing-exercises/tree/main/episodes/3-fortran-unit-test-syntax/challenge

How do you write a Fortran unit test?

Create test module - test_find_steady_state.pf

module test find steady state
use game of life mod, only : find steady_ state ! <-- Import the src to be tested
use funit ! <-- Import the serial pFUnit 1ib

implicit none

! Define types to act as test parameters (and test case for pfunit)
contains

! Define a test suite (collection of tests) to be returned from a procedure
! Define the actual test execution code which will call the src and execute assertions

! Define constructors for your derived types (test parameters/cases)
end module test find steady state

How do you write a Fortran unit test?

Define types to act as test parameters (and test case for pfunit)

type, extends (AbstractTestParameter) :: find steady state_test params ! <-- pFUnit type

end type find steady state_ test params

How do you write a Fortran unit test?

Define types to act as test parameters (and test case for pfunit)

type, extends (AbstractTestParameter) :: find steady state_test params
!> The initial starting board to be passed into find steady state ! <-- Inputs
integer, dimension(:,:), allocatable :: input board ! <--

end type find steady state_ test params

How do you write a Fortran unit test?

Define types to act as test parameters (and test case for pfunit)

type, extends (AbstractTestParameter) :: find steady state_test params
!> The initial starting board to be passed into find steady state
integer, dimension(:,:), allocatable :: input board
!> The expected value of steady state
logical :: expected steady state
!> The expected output generation number

integer :: expected generation number

end type find steady state_ test params

! <-- Expected outputs

How do you write a Fortran unit test?

Define types to act as test parameters (and test case for pfunit)

type, extends (AbstractTestParameter) :: find steady state_test params
!> The initial starting board to be passed into find steady state
integer, dimension(:,:), allocatable :: input board
!> The expected value of steady state
logical :: expected steady state
!> The expected output generation number
integer :: expected generation number

!'> A description of the test to be outputted for logging

character (1len=100) :: description
Contains
procedure :: toString => find steady state test params_toString

end type find steady state_ test params

<-- Required for
<-- logging
<__

<L ==

How do you write a Fortran unit test?

Define types to act as test parameters (and test case for pfunit)

@QtestParameter

type, extends (AbstractTestParameter) find steady_ state_test params

!> The initial starting board to be passed into find steady state
integer, dimension(:,:), allocatable input board
!> The expected value of steady state

logical :: expected steady state

!> The expected output generation number

integer :: expected generation number

!'> A description of the test to be outputted for logging

character (1len=100) :: description
contains
procedure toString => find steady state_ test params_toString

end type find steady state_ test params

! <-- pFUnit macro

How do you write a Fortran unit test?

Define types to act as test parameters (and test case for pfunit)

type, extends (ParameterizedTestCase) :: find steady state_test case ! <-- pFUnit type

end type find steady state_ test case

How do you write a Fortran unit test?

Define types to act as test parameters (and test case for pfunit)

type, extends (ParameterizedTestCase) :: find steady state_test case
type (find steady state test params) :: params ! <-- Parameterised

end type find steady state_ test case

How do you write a Fortran unit test?

Define types to act as test parameters (and test case for pfunit)

@TestCase (testParameters={getTestSuite ()}, constructor=paramsToCase) ! <-- pFUnit macro
type, extends (ParameterizedTestCase) :: find steady state_test case
type (find steady state test params) :: params

end type find steady state_ test case

How do you write a Fortran unit test?

Define your testsuite (parameters)

function getTestSuite() result (params)

type (find steady state test params), allocatable :: params(:) ! <-- Returns a list of parameters

end function getTestSuite

How do you write a Fortran unit test?

Define your testsuite (parameters)

function getTestSuite() result (params)

type (find steady state test params), allocatable :: params(:)
integer, dimension(:,:), allocatable :: board

allocate (board(31,31))

board = 0

board (9, 9:11) = [0,1,0]
board(10,9:11) = [1,1,1]
board(11,9:11) = [1,0,1]
board(12,9:11) = [0,1,0]

end function getTestSuite

Populate the board for
each test case.
In this scenario there is

only one

How do you write a Fortran unit test?

Define your testsuite (parameters)

function getTestSuite() result (params)

type (find steady state test params), allocatable :: params(:)
integer, dimension(:,:), allocatable :: board

allocate (board(31,31))

board = 0

board (9, 9:11) = [0,1,0]

board(10,9:11) = [1,1,1]

board(11,9:11) = [1,0,1]

board(12,9:11) = [0,1,0]

params = [& ! <--111]l1 Create the test cases

find steady state_test params(board, .true., 17, "an exploder initial state")]

end function getTestSuite

How do you write a Fortran unit test?

Define the actual test execution code which will call the src and execute assertions

subroutine TestFindSteadyState (this)

class(find steady state test case), intent(inout) :: this ! <-- Input the test case itself

end subroutine TestFindSteadyState

How do you write a Fortran unit test?

Define the actual test execution code which will call the src and execute assertions

subroutine TestFindSteadyState (this)

class(find steady state test case), intent(inout) :: this
logical :: actual_steady_ state ! <-- Define values to be checked
integer :: actual_generation_number ! <-- and call src under test

L A A A A A A

call find steady_ state(.false., this%params$%input board, actual_steady state, actual_generation_number)

end subroutine TestFindSteadyState

How do you write a Fortran unit test?

Define the actual test execution code which will call the src and execute assertions

subroutine TestFindSteadyState (this)

class(find steady state test case), intent(inout) :: this
logical :: actual_steady_ state
integer :: actual_generation_number

call find steady_ state(.false., this%params$%input board, actual_steady state, actual_generation_number)
' 111l!l] Check generation_number value

@assertEqual (this%params%expected generation number, actual_ generation number, "Unexpected generation_number")

end subroutine TestFindSteadyState

How do you write a Fortran unit test?

Define the actual test execution code which will call the src and execute assertions

subroutine TestFindSteadyState (this)

class(find steady state test case), intent(inout) :: this
logical :: actual_steady_ state
integer :: actual_generation_number

call find steady_ state(.false., this%params$%input board, actual_steady state, actual_generation_number)
@assertEqual (this%params%expected generation number, actual_ generation number, "Unexpected generation_number")
' 111ll]l Check steady state value

@assertTrue (this%params%expected_steady state .eqv. actual_steady_ state, "Unexpected steady state value")

end subroutine TestFindSteadyState

How do you write a Fortran unit test?

Define the actual test execution code which will call the src and execute assertions

@Test ! <-- pFUnit macro
subroutine TestFindSteadyState (this)

class(find steady state test case), intent(inout) :: this

logical :: actual_steady_ state

integer :: actual_generation_number

call find steady_ state(.false., this%params$%input board, actual_steady state, actual_generation_number)
@assertEqual (this%params%expected generation number, actual_ generation number, "Unexpected generation_number")
@assertTrue (this%params%expected_steady state .eqv. actual_steady_ state, "Unexpected steady state value")

end subroutine TestFindSteadyState

How do you write a Fortran unit test?

Define constructors for your derived types (test cases/parameters)

function paramsToCase (testParameter) result(tst) ! <-- Convert params
type (find steady state_test params), intent(in) :: testParameter ! <-- to case
type (find _steady state_test case) :: tst 1 <--

end function paramsToCase

How do you write a Fortran unit test?

Define constructors for your derived types (test cases/parameters)

function paramsToCase (testParameter) result(tst)

type (find steady state test params), intent(in) :: testParameter
type (find _steady state_test case) :: tst
tst%params = testParameter ! <-- Copy params

end function paramsToCase

How do you write a Fortran unit test?

Define constructors for your derived types (test cases/parameters)

function find steady state test params toString(this) result(string) ! <-- Convert params
class (find steady state test params), intent(in) :: this ! <-- to string
character(:), allocatable :: string I <--

end function find steady state test params toString

How do you write a Fortran unit test?

Define constructors for your derived types (test cases/parameters)

function find steady state test params toString(this) result(string)

class (find steady state test params), intent(in)

character(:), allocatable :: string

character (len=80) :: buffer

integer :: nrow, ncol

nrow = size(this%input board, 1)
ncol = size(this%input board, 2)
write (buffer,'(i2, "x", i2, " board with ", a)') &

nrow, ncol, trim(this%description)

end function find steady state test params toString

<-- Populate a buffer with
<-- some text to be

<-- logged during testing

How do you write a Fortran unit test?

Define constructors for your derived types (test cases/parameters)

function find steady state test params toString(this) result(string)

class (find steady state test params), intent(in) :: this
character(:), allocatable :: string

character (len=80) :: buffer

integer :: nrow, ncol

nrow = size(this%input board, 1)
ncol = size(this%input board, 2)
write (buffer,'(i2, "x", i2, " board with ", a)') &

nrow, ncol, trim(this%description)

string = trim(buffer) ! <-- Save the buffer

end function find steady state test params toString

Integrating with build systems

pFUnit CMake configuration

find package (PFUNIT REQUIRED) # <-- Find pFUnit lib from CMAKE PREIX PATH

Integrating with build systems

pFUnit CMake configuration

find package (PFUNIT REQUIRED)

enable_testing()

<-- Enable ctest

Integrating with build systems

pFUnit CMake configuration

find package (PFUNIT REQUIRED)

enable_testing()

add_library (sut STATIC ${PROJ_SRC_FILES})

<-- Create a src library

Integrating with build systems

pFUnit CMake configuration

find package (PFUNIT REQUIRED)

enable_testing()

add_library (sut STATIC ${PROJ_SRC_FILES})

file (GLOB test_srcs "${PROJECT_ SOURCE DIR}/test/pfunit/*.pf")
set(test_find steady state src ${test_srcs})

list (FILTER test_find steady state_src
INCLUDE REGEX ".*test_ find steady_ state.pf")

H H= = B

<-- Filter all test files to just the
<-- find steady_state test

<=

<--

<=

Integrating with build systems

pFUnit CMake configuration

find package (PFUNIT REQUIRED)

enable_testing()
add library (sut STATIC ${PROJ_SRC_FILES})
file (GLOB test_srcs "${PROJECT_ SOURCE DIR}/test/pfunit/*.pf")
set(test_find steady state src ${test_srcs})
list (FILTER test_find steady state_src
INCLUDE REGEX ".*test_ find steady_ state.pf")
add pfunit _ctest (pfunit find steady state_ tests

TEST_ SOURCES ${test find steady state_ src}
LINK LIBRARIES sut)

<-- Add test to ctest with the
<-- provided pfunit function

#<--

Writing a Parallel Unit test

What do we want from a parallel unit test?

There are a few key things we need a parallel unit test to handle...

e Running with different numbers of MPI ranks for a single mpirun execution.

e Asserting different things for different ranks within the same test case.

How do you write a parallel unit test?

Live Demo

episodes/5-testing-parallel-code/challenge

https://github.com/UCL-ARC/fortran-unit-testing-exercises/tree/main/episodes/5-testing-parallel-code/challenge

How do you write a parallel unit test?

Use pfunit instead of funit

module test find steady state
use game of life mod, only : find steady_ state ! <-- Import the src to be tested
use pfunit ! <-- Import the parallel pFUnit 1lib

implicit none

! Define types to act as test parameters (and test case for pfunit)
contains

! Define a test suite (collection of tests) to be returned from a procedure
! Define the actual test execution code which will call the src and execute assertions

! Define constructors for your derived types (test parameters/cases)
end module test find steady state

How do you write a parallel unit test?

Define types to act as test parameters (and test case for pfunit)

type, extends (MPITestParameter) :: find steady state_ test params ! <-- Extend MPITestParameter

end type find steady state_test params

How do you write a parallel unit test?

Define types to act as test parameters (and test case for pfunit)

@testParameter

type, extends (MPITestParameter) :: find steady state_ test params
!> The initial starting board to be passed into find steady state
integer, dimension(:,:), allocatable :: input board

!> The expected steady state result

logical :: expected steady_ state
!> The expected number of generations to reach steady state
integer :: expected generation_ number
!> A description of the test to be outputted for logging
character (len=100) :: description

contains
procedure :: toString => find steady_ state_test_params_toString

end type find steady state_test params

<-- No change

<-- No change

How do you write a parallel unit test?

Define types to act as test parameters (and test case for pfunit)

type, extends (MPITestCase) :: find steady state_test case ! <-- Extend MPITestCase

end type find steady state test case

How do you write a parallel unit test?

Define types to act as test parameters (and test case for pfunit)

@TestCase (testParameters={getTestSuite ()}, constructor=paramsToCase) ! <-- No change
type, extends (MPITestCase) :: find steady state_test case
type (find steady state test params) :: params ! <-- No change

end type find steady state test case

How do you write a parallel unit test?

Set the number of MPI ranks for each test case

function getTestSuite () result(params) ! <-- No change to the signature or

type (find_steady state_ test params), allocatable :: params(:) ! <-- how we populate the board
! <--
1 <——

integer, dimension(:,:), allocatable :: board ! <--
1 <—-—

allocate (board (31, 31)) 1 <--

board = 0 ! <--

board(9,9:11) = [0,1,0] ! <--

board(10,9:11) = [1,1,1] ! <--

board(11,9:11) = [1,0,1] ! <--

board(12,9:11) = [0,1,0] 1 <--

end function getTestSuite

How do you write a parallel unit test?

Set the number of MPI ranks for each test case

function getTestSuite () result(params)

type (find steady state test params), allocatable :: params(:)
integer :: i, max _num ranks = 8 ! <-- Additional variables required
integer, dimension(:,:), allocatable :: board

allocate (board (31, 31))

board = 0
board(9,9:11) = [0,1,0]
board(10,9:11) = [1,1,1]
board(11,9:11) = [1,0,1]
board(12,9:11) = [0,1,0]
allocate (params (max_num_ ranks)) ! <-- Add a set of parameters for each number of ranks
do i = 1, max _num_ranks V' <==111111
params (i) = find steady state_test params(i, board, .true., 17, "an exploder initial state")

end do

end function getTestSuite

How do you write a parallel unit test?

Update the call to find steady state

@Test
subroutine TestFindSteadyState (this)

class(find steady state_test case), intent (inout)

logical :: actual_steady state

integer :: actual_generation_ number

this

<-- No change

11111l No change

@assertEqual (this%params%expected generation number, actual generation number, "Unexpected generation number")

@assertTrue (this%params%expected steady state .eqv. actual_ steady state, "Unexpected steady state value")

end subroutine TestFindSteadyState

How do you write a parallel unit test?

Update the call to find steady state

@Test

subroutine TestFindSteadyState (this)

class(find steady state_ test case), intent(inout) :: this
logical :: actual_steady state
integer :: actual_generation_ number

' 1111l] Use new signature
call find steady state(actual_steady state, actual generation number, this%params%input board, &
size (this%params%input board, 1), size(this%params%input board, 2), &

this%$getMpiCommunicator (), this%$getNumProcessesRequested())

@assertEqual (this%params%expected generation number, actual generation number, "Unexpected generation number")

@assertTrue (this%params%expected steady state .eqv. actual_ steady state, "Unexpected steady state value")

end subroutine TestFindSteadyState

How do you write a parallel unit test?

Update CMakeLists.txt to mark the test as parallel

find package (PFUNIT REQUIRED) # <-- No change

enable testing()
add library (sut STATIC ${PROJ_SRC_FILES})
file (GLOB test_srcs "${PROJECT SOURCE DIR}/test/pfunit/*.pf")

set(test_find steady state_src ${test_srcs})

list (FILTER test find steady_ state_src

H H H H H= = H H*= H
A
I
|

INCLUDE REGEX ".*test find steady state.pf")

How do you write a parallel unit test?

Update CMakeLists.txt to mark the test as parallel

find package (PFUNIT REQUIRED)

enable testing()

add library (sut STATIC ${PROJ_SRC_FILES})

file (GLOB test_srcs "${PROJECT SOURCE DIR}/test/pfunit/*.pf")
set(test_find steady state_src ${test_srcs})

list (FILTER test find steady_ state_src
INCLUDE REGEX ".*test find steady state.pf")

add pfunit ctest (pfunit find steady state_tests # <-- Specify a maximum number of MPI processors
TEST_SOURCES ${test find steady state_src} # <--
LINK LIBRARIES sut # <--

MAX PES 8) # <-- This line

Tips for writing testable parallel code?

Some tips for writing parallel unit tests...

e Not all tests need to be parallel.
o If a procedure does not call the MPI library it does not need to be tested in parallel.

e Isolate calls to the MPI library into procedures.
o This allows testing more procedures using serial tests.

e Pass the MPI communicator into procedures which call the MPI library.
o This allows the test library to set the communicator when testing.

Thank You

Connor Aird

The Source Material

e Fortran unit testing lesson in the style of the

software carpentries

e GitHub repository of exercises to act as

challenges within lesson

() o=m

Unit Testing in Fortran Key Points

Collapse <

EPISODES
« Summary and Setup
Exercises repository
1. Introduction to Unit Testing
2. Introduction to Unit Testing in Fortran
3. Fortran Unit Test Syntax

4. Understanding test output

e v ‘ © Leamer View v

Glossary Learner Profiles More v Search the All In One page

Next: Introduction to Unit... >

Summary and Setup

This walkthrough aims to...

+ Demonstrate the importance of testing Fortran codes with unit tests

« Show how to write unit tests for Fortran Code using three different frameworks: test-drive, veggies
and pFUnit

+ Show how to integrate these tests with both CMake and FPM build systems.

« Highlight the differences between writing unit tests for parallel and serial Fortran code.

O

THE
CARPENTRIES

https://github-pages.arc.ucl.ac.uk/fortran-unit-testing-lesson/
https://github.com/UCL-ARC/fortran-unit-testing-exercises

Try it yourself

Open a codespace in the exercises repository

qithub.com/UCL-ARC/fortran-unit-testing-exercises

https://github.com/UCL-ARC/fortran-unit-testing-exercises
https://docs.google.com/file/d/1j-RPlPmNi-ADjSEWLpXgH2eDDaQk2MWH/preview

